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Abstract

To generate coherent responses, language models infer unobserved meaning from their input
text sequence. One potential explanation for this capability arises from theories of delay embed-
dings in dynamical systems, which prove that unobserved variables can be recovered from the
history of only a handful of observed variables. To test whether language models are effectively
constructing delay embeddings, we measure the capacities of sequence models to reconstruct un-
observed dynamics. We trained 1-layer transformer decoders and state-space sequence models on
next-step prediction from noisy, partially-observed time series data. We found that each sequence
layer can learn a viable embedding of the underlying system. However, state-space models have
a stronger inductive bias than transformers—in particular, they more effectively reconstruct unob-
served information at initialization, leading to more parameter-efficient models and lower error on
dynamics tasks. Our work thus forges a novel connection between dynamical systems and deep
learning sequence models via delay embedding theory.
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1. Introduction

Neural sequence models, specifically transformers and state-space models (SSMs) trained on next-
token prediction, have made extraordinary strides in natural language processing [4-7, 10, 12, 20,
21]. More generally, these models operate over ordered sequences of data, and thus have the po-
tential to be learners of any temporal prediction problem. Yet, transformers have been noted to
underperform in continuous time-series prediction [23], an issue that several transformer architec-
ture variants have sought to rectify [11, 22, 24]. Certain SSMs outperform transformer variants on
benchmark time-series prediction tasks [6]. Furthermore, it is unclear why transformers underper-
form other models in time-series forecasting.

In this work, we present mechanistic insights into the performance of transformers and SSMs on
time-series prediction tasks of well-characterized dynamical systems. We examine their learned rep-
resentations and quantify their alignment to the dynamical structure of the underlying system. Our
results connect neural networks to the theory of delay embeddings in dynamical systems, thereby
shedding light on the inductive biases and capabilities of each architecture for time-series prediction.

1.1. Delay Embedding Theory

Delay embedding is a well-known method for reconstructing and characterizing the geometry of
chaotic dynamical systems, when the system is only partially observed. Delay embedding a time-
series involves stacking time-delayed copies of the observed data into a vector. The most famous
theory in the field, Takens’ Delay Embedding Theorem, proved that with sufficiently many delays,
a delay embedding of a single variable in a multi-variable dynamical system is diffeomorphic to
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the original dynamics [17]. However, this theorem lacks two important components for practical
use: how to pick the optimal delay embedding parameters, and an understanding of the role of
observational noise [1]. While Takens provided a prescription for a minimal number of delays to
reconstruct the attractor, this is not necessarily the optimal delay embedding. Better embeddings
integrate enough information to be robust to observational noise, but not too much so that they
are overly distorted, thereby hampering downstream prediction. We demonstrate these tradeoffs in
Fig.1. Thus, when creating a delay embedding, one must be selective about which components of
the history are used. Methods to pick appropriate delays include autocorrelation analysis, mutual
information, persistent homology, and more [2, 3, 8, 14, 18].

Transformers and SSMs can both be viewed as delay embeddings, as they operate over a time
history and are capable of inferring latent variables [15]. However, the behavior of these sequence
models depends on how they combine information across time. Transformer-based language models
often sparsely combine inputs representing past states via a learned attention mechanism [9] while
structured state space sequence models (SSMs) are designed to memorize as much of the past inputs
as possible [5, 7, 21]. Here, we apply the delay embedding perspective on transformers and SSMs
to better understand the inductive bias of each architecture. In particular, we study the performance
and dynamics of one-layer transformers and SSMs (the Linear Recurrent Unit [12]) on a noisy,
partially observed, chaotic dynamics prediction task. By forging the connection between delay
embedding theory with sequence prediction in deep learning, we hope to establish a relationship
that will mutually benefit research in both deep learning and dynamical systems theory.

1.2. Contributions

We characterize the embedding properties of 1-layer SSMs and transformers, showing that SSMs
have a stronger inductive bias for delay embeddings, which leads to better attractor reconstructions
and lower error on a chaotic prediction task. However, we also show that SSMs contain a large
amount of redundancy, which excessively deforms the attractor and makes the model more sensitive
to observational noise. While transformers do not have this inductive bias, we find that they are able
to successfully learn a viable delay embedding with sufficient training.

2. Methods

We study one-layer sequence models, which consist of the following layers, in order: an encoding
matrix, layer normalization, the sequence layer, layer normalization, and a three-layer MLP. We
study one form of each class for simplicity: a GPT-style decoder-only transformer, and the linear-
recurrent unit (LRU, [12]). For the fairest comparison between architectures, we study transformers
with positional embeddings applied only within the softmax function of self-attention. Positional
embeddings provide temporal information, breaking the permutation invariance of the transformer
inputs to enable higher performance. Not including positional embeddings outside the softmax
function, on the other hand, improves the quality of the manifold reconstructions. Embeddings
were learnable. Equations describing each of the sequence layers can be found in the Appendix.
Our models were trained on next-step prediction for a single observed variable of the 3-dimensional,

chaotic Lorenz attractor (see Appendix A.1). We simulated 2000 trajectories of the system for 600
timesteps using the simulation timestep dt = 0.01 (Fig. 1a). Each trajectory had a unique initial
condition. We removed the first 100 timesteps to eliminate transients. We added in i.i.d. Gaus-
sian noise of zero mean and variance 0.1 to the data at each timestep. We trained our models with
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Figure 1: Delay Embeddings. a. Noisy data from the x dimension of the Lorenz attractor, on which
our models are trained. b. Visualization of the top two Principal Components of a delay
embedding with too few delays. Here, noise is amplified and the attractor is distorted. c.
As in b, with too many delays. Here the attractor is folded into too many dimensions,
making the data harder to model. d. In the intermediate, the embedding both reduces
noise and has a geometry that reflects the original space (visualized in Appendix A.1).

Adam for 1000 epochs. For our analysis, we only studied models that reached a Mean Absolute
Standardized Error (MASE) < 1. The MASE is the Absolute Error |z; — |, normalized by the
Persistence Baseline: £; = x;—1. MASE > 1 indicates that the model has captured no predictive
information. At the time of submission, we trained approximately 25 networks of each architecture
and dimensionality (10, 25, 50, and 100). We collected a similarly sized dataset for different values
of observed noise (0.05 and 0.0), and display these results in Appendix Fig. 8.

2.1. Measuring Delay Embedding Quality

We quantified how well the sequence layer outputs operated as delay embeddings via three methods
(futher detailed in Appendix 7):

Decoding hidden variables We trained linear and nonlinear (MLP) decoders to predict the two
unobserved dimensions of the 3-dimensional attractor, and measured the test R2.

Measuring Smoothness Because a diffeomorphism is a smooth transformation, neighborhoods
in one space should map onto neighborhoods in the other space. We measured this by identifying
the fraction of overlap between the twenty nearest neighbors in the embedding and the true space.

Measuring Unfolding Lastly, we measure how well the embedding lends itself to prediction, via
the conditional variance of the future data given the embedding, o2(x) = Var(z(t + 7)|o;) where
o(t) is the model hidden state. We provide implementation details in the appendix. We calculate the
average of o2 over all data points, and average over 7 from 1 to 10 steps in the future.

3. Results

We began our analysis by inspecting the learning curves of each model, plotting the performance
across training in Fig. 2. LRU models across all dimensionalities outperformed all GPT models in
terms of MASE, albeit by a small margin (final performance in Appendix Fig. 8).

To visually inspect the quality of embeddings, we plotted the top 4 Principal Components of
two sample models that solve the noiseless task with MASE 0.06 in Fig. 3 (LRU in a, GPT in b).
Two observations are immediately evident: (1) The LRU embedding is more visually appealing,
and (2) the butterfly shape emerged only in the LRU-this suggests that the LRU generated a more
faithful delay embedding. However, in the first panel, PCs 1 and 2 suggest that this attractor is quite
deformed. On the other hand, the transformer embedding is much less appealing. However, the two
lobes of the attractor are identifiable in the first 2 PCs, and the dimensionality of the embedding
(Participation Ratio of 2.47) is closer to the true attractor dimension (approximately 1.93) whereas
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Figure 4: Delay embedding metrics across training, colored by architecture and dimension. a. MLP
decoding of unobserved variables, test R2. b. Linear decoding test R?. ¢. Neighbors
overlap fraction between full dynamic state and embedding. d. Conditional variance of
future data given the embedding, averaged over future time steps from 1 to 10. Shading
indicates standard error.

the SSM embedding’s dimension is 1.29. This larger dimensionality may lead to increased noise
robustness of the transformers (see Appendix, Fig. 9).

We applied each of the embedding metrics to the systems every 50 epochs during training, and
plotted the results in Fig. 4, averaging over runs and separated by dimensionality and architecture.
Across all metrics, we found that the LRU consistently started off with superior embedding quality.
This indicates that the architecture has a powerful inductive bias for delay embedding. Importantly,
each metric improved across training, demonstrating that the embedding can be optimized for better
performance. The transformers, on the other hand, started off with much worse embedding met-
ric performance, but gradually approached the embedding quality seen in the LRU models. We
correlated each metric to prediction performance, finding a robust correlation between prediction
quality and each of nonlinear decoding (correlation of 0.76), linear decoding (correlation of 0.56),
and nearest neighbor overlap (correlation of 0.64, see Appendix A.5).

4. Conclusion

In this study, we demonstrated that the inductive bias of SSMs leads to improved embedding re-
construction, which was correlated with better performance on time series prediction. We found
that SSMs have slightly higher performance on a dynamical systems prediction task, but were more
sensitive to noise. Furthermore, for similar embedding dimensionality, the use of positional embed-
dings increases the parameter count of transformers relative to SSMs. This suggests that SSMs may
be preferred in the low-data, low-compute regime. While our models and task were simplified, our
study identifies a generic property of how time series are combined in each architecture, which is
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relevant for any application of these models to time series prediction. In future work, we plan to
study how transformers and selective SSMs [4] select their delays.
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Appendix A.
A.l. Lorenz attractor equations
% =o(y—x)
Y —sp-2) -y
% =ay — Bz

ey

2

3)

Where 0 = 10, p = 28, § = 8/3. The fractal dimension of the attractor, measured using
the Kaplan-Yorke dimension, is approximately 2.06. The dimension of the attractor, which we

computed via participation ratio, is 1.986.

Figure 5: 3-dimensional visualization of the Lorenz attractor. Simulated with noise, colored by

time.
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A.2. Sequence Model Equations

For a given sequence of inputs U, positional embeddings P, present time point 7', our self-attention
layer is written as

or = SoftMax[(Us<t + Pic) W (uy 4 p) W U 4)

Notably, taking positional embeddings out of the output (i.e., W (U<t + Pi<r) does not neg-
atively affect the performance, as the dynamics of the Lorenz attractor is time-invariant (it is an
autonomous system). For convenience, we write the key and query matrices together as W7 and
the output and value matrices together as W°.

The Linear Recurrent Unit layer [12] is a discrete linear dynamical system:

Ter1 = Axy + Buy )

Oy = CRe(a?t) + DUt (6)

In particular, A is a diagonal matrix with complex eigenvalues initialized uniformly on a disk within
the unit circle of the complex plane. This gives the model rotational dynamic properties, thereby
allowing each input to be moved to a different subspace and be preserved. Because the input and
output are real, the complex component of x is discarded before a linear map to the output.

A.3. Embeddings before training

In Fig. 6, we visualize the embeddings of each sequence layer before training, when driven with a
noiseless input. While neither looks much like the lorenz attractor, and are both quite low dimen-
sional, it is evident that the LRU has a more similar appearance, with the two lobes evident in the
2nd plot.

A.4. Metrics
A.4.1. PARTICIPATION RATIO

The Participation Ratio is a continuous measure of dimensionality, derived from Principal Compo-
nents Analysis. While it is not equivalent to the fractal dimension of an attractor, which is typically
measured via the Lyapunov exponents and is much more challenging to compute from data, it is
useful to quantify dimensionality without setting arbitrary thresholds on the explained variance.
Given the eigenvalues A; of the centered correlation matrix, the participation ratio is calculated as

(M)
P=500?

A.4.2. MEAN ABSOLUTE STANDARDIZED ERROR

(N

The MASE for an individual time point measures the performance of a predictive model, relative
to the persistence baseline—the prediction one would make if they had no information. MASE is

computed as follows:

AN \xt - ft|

MASE(x¢, &) = ———
|2t — 1]

®)
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Figure 6: Untrained trajectories from each architecture, the same models as in Fig. 3.

A.4.3. CONVERGENT CROSS MAPPING

Convergent Cross Mapping (CCM, [16]) was developed as a measure of causality between dynam-
ical systems, but here we chose to use it to measure continuity of the embedding, as it uses similar
underlying principles. Given simultaneously recorded time series data from two dynamical systems
(z and y), CCM constructs a delay embedding of each, then uses the k-nearest neighbors (with %
equal to the embedding dimensionality) in one system to predict the value of the state in the other
system. More specifically, given a particular time point x(¢), the k-nearest neighbors of the first
system, U(z), are identified. These points are then mapped to the embedding y(t¢) yielding an
equivalent set of neighbors, U(y), (given the one-to-one mapping), and the prediction is made via
their average:

k
R 1
9(t) = T E Yi )
i€U(y)

We used the following code: https://github.com/nickc1/skcem.

A.4.4. NEIGHBORS OVERLAP

We also implemented a stronger metric of continuity via the k-nearest neighbors, which we call the
Neighbors Overlap. For each given point, mapped one-to-one via the embedding: y = f(z), we
compute the nearest neighbors of the true data space and the embedding separately: U(z), V (y).
Then, we identify the time indices of each neigbor: T),,T,. The metric averages the fraction of

10
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overlap between these index sets across each point in the dataset:

Overlap(X,Y) = % > W (10)

Where |T,(i)| = |T,(i)| = k =20, | X| = |Y]| = n.

A.4.5. UNFOLDING METRIC

We implemented the embedding complexity metric from [19]. For noisy data, this metric charac-
terizes the noise robustness of the embedding, and more generally calculates the complexity of the
model required for next-step prediction. Here, we explain the motivation for the metric and detail
the computational steps required to implement it.

In Casdagli et al. 1991 [1], the authors suggest that predictive value is a good quantity to
optimize for in an embedding. The authors define the predictive value of a reconstructed coordinate
y as the conditional probability density on the time-series values T' time-steps ahead:

p(x(t+T)[y(t))

where 2 € RP is the observed time-series and iy € R is the reconstructed coordinate. As noted by
the authors, this quantity is independent of the predictive estimation procedure, as it captures what
can be predicted about x(¢ + T') from y(t) with a perfect estimation procedure. The authors then go
on to suggest that the variance of this distribution, given by

Var(aly) = [ #*plaly)de - ( / xp(x\y)dx>2

is a reasonable quantity to optimize for. Given that the ideal predictor is given by & = E(z|y), the
above variance is the mean-square prediction error of the ideal predictor, and thus presents a lower
bound on the mean-square prediction error of any predictor.

Building on this idea, Uzal et. al. [19] define the unfolding metric, which aims to estimate this
variance. Given a time series dataset, the unfolding metric calculates two values for each time step
based on its k-nearest neighbors. The first measures the variance of these points in the input space
as time progresses. The latter is the volume of these points in the embedding space.

The conditional variance of future time steps, given the embedding, is approximated using the
nearest neighbors:

Var(z(T)|Be(i)) ~ E2(T, &) = k:—1H > (T) - w(T, 5))? (11
P €U, (7)
where 7 is the delay embedded initial condition, /(7" is the future value of the true time series
x corresponding to initial delay embedded condition Z, B.(Z) is a Gaussian ball with standard
deviation € around Z, Uy(Z) is the neighborhood of k£ + 1 points containing Z and its k& neighbors
(and is an approximation of B, (%), and the mean of the embedding is computed as:

up(T, &) = > (T (12)
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Then, the overall conditional variance is computed by averaging E,% over the first p timesteps after
the initial condition:

p
Z EX(Ty, &) (13)

%M—‘

where the T;’s index the timesteps.

This is done for each individual data point, and we report the average across the attractor. We can
also normalize this by the average volume of the whole attractor, which is equivalent to weighting
the metric by the ergodic measure of the attractor. As suggested by Uzal et al. [19], we used k = 3
and p = 10.

A.4.6. DYNAMICAL SIMILARITY ANALYSIS

DSA, developed in [13], is another method by which one could characterize the embedding nature of
the sequence layer output. Briefly, the metric captures whether or not two systems are topologically
conjugate, the exact sort of similarity held between a system and its delay-embedded counterpart.
However, because we mainly focused on the predictive capabilities of the embedding, both with
respect to unobserved variables and the downstream task, we decided not to implement it here.

A.S. Relation of each metric to performance

Here, we demonstrate that in the noisy case, multiple embedding metrics are related to the model’s
predictive capacity. In Fig. 7, we scatter each metric for the noisy data, with noise variance
02 = 0.1. We observe a robust correlation for the nonlinear decoding accuracy, linear decoding
accuracy, and neighbors overlap. This strengthens our hypothesis that a stronger embedding im-
proves prediction performance, and provides insight into the superior predictive capabilities of the
LRU models.

As can be seen in Fig. 7f, we do not observe any correlation between performance and embed-
ding complexity. This is likely because we utilize sufficiently wide MLPs for prediction, implicitly
limiting the necessary complexity of the hidden embeddings. In future work, we will restrict the
model expressivity and seek to identify a connection between embedding complexity and prediction
performance.

A.6. Change in performance due to noise

To assess the robustness of each model architecture to observational noise applied i.i.d to each time
point, we trained models with noise variances of 02 € {0.0,0.05,0.1}. We display the performance
of each model in Fig. 8. We also train baseline models which we call ’Delay MLPs’—these are
MLPs that operate over explicit delay embeddings. We simulated these with MLP widths ranging
from 10 to 100, with a delay interval of 1 and a number of delays of sizes {10, 25, 50, 100}. We find
that the LRU models perform comparably to the Delay MLPs, and significantly better than GPTs
across all noise levels. However, in Fig. 9, we measure the percent change in MASE when the
noise is increased from 0.0 to 0.1, which shows that the LRU is more susceptible to noise than the
transformer. This corroborates with results from Fig. 3 which show that the LRU model is more
highly folded and lower dimensional than the transformer.
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Figure 7: Relation of each embedding metric with performance. Each dot is an individual trained
neural network, colored by architecture and dimensionality. z-axis on all plots is the val-
idation Mean Absolute Standardized Error (MASE) after training. Dotted line indicates
regression line of best fit, with R? coefficient listed in each legend a. MASE against non-
linear decoding accuracy R2, plotted as 1— accuracy, due to logarithmic improvement. b.
Likewise, MASE against linear decoding accuracy, demonstrating that better unfolding
also improves performance. c¢. Relationship of MASE with fractional overlap of the 20
nearest neighbors in each embedding space (full data space versus output of the sequence
layer). d. Relationship of the MASE with the local volume of the embedding, mea-
sured as the average distance of the 20 nearest neighbors in the embedding space from
the present point. e. Relationship with the Convergent Cross Mapping Score, detailed
in Appendix 7. f. Relationship with conditional variance, a measure of the unfolding
complexity of the attractor, detailed in Appendix .
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Figure 8: Performance of each model across different dimensionalities and variance of observa-
tional noise. On the right, the baseline MLP over the delay embedding is displayed. Bars

indicate standard error.
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Figure 9: The percent growth in the MASE

for the LRU and GPT when noise
is increased to 0.1 from 0.0 (noise
of 0.05 omitted for clarity). Bars
indicate standard error.
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